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Abstract

The diffraction of long-crested incident waves propagating within a thin flexible elastic sheet floating on water by

narrow cracks is considered. The cracks are straight and each of finite length and must be parallel to one another. This

arrangement lends itself to the use of Fourier transform methods, which allows the solution to a simpler problem to be

used. For N cracks, 2N coupled integral equations results for 2N unknown functions related to the jump in

displacement and slope across each crack as a function of distance along the cracks. These integral equations are

hypersingular but, in approximating their solution using Galerkin’s method, a judicious choice of trial function

provides maximum simplification in the algebraic equations which result. Numerical results focus on the diffracted

wave amplitudes, the maximum displacement of the elastic sheet and the stress intensity factor at the ends of the cracks.

For two side-by-side cracks, large resonant motion can occur in the strip between the cracks.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The present work is the continuation of a sequence of papers by the authors aimed at modelling the effect of cracks in

large ice floes on incident flexural waves within the ice.

Early work by Press and Ewing (1951) confirmed experimentally the existence of dispersive flexural waves travelling

in large sheets of ice floating on water. They developed a formula for determining the velocity of these using the

coupling conditions between the ice, modelled by a thin elastic sheet, and the water beneath. Observations by Robin

(1963) that large ice floes do indeed bend to allow waves to propagate through them has prompted a number of authors

to consider further problems using this model, and considerable progress has been made in understanding the extent of

wave propagation through ice using this model despite the complexity of the governing equations. For an extensive

survey article, see Squire et al. (1995).

One of the earliest approaches can be found in Stoker (1957) who used the shallow water equations to determine the

reflection and transmission of a surface gravity wave by a thin freely floating elastic sheet of finite extent. Wave

solutions in the water regions were matched at the edges of the sheet with solutions of the sixth-order ordinary

differential equation governing the sheet displacement, using continuity and free edge conditions. Shortly afterwards,

Evans and Davies (1968) considered the scattering of obliquely incident water waves by a semi-infinite thin elastic sheet
e front matter r 2006 Elsevier Ltd. All rights reserved.
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floating on water of finite depth, using the full linear water wave theory. They used the Wiener–Hopf method to obtain

an explicit solution, but the complicated fifth-order differential operator satisfied by the velocity potential on the sheet,

arising from the coupling of the sheet displacement and water velocity, prevented detailed numerical calculations from

being made.

Further simpler models describing waves in ice continued to be developed, primarily by researchers in New Zealand,

but it was the possibility of constructing massive floating runways in Japan which led to a dramatic increase in activity

in the general area of VLFS (very large floating structures) and in particular in developing good mathematical models

of the bending of structures in waves. The work of Evans and Davies (1968) was revisited by a number of authors

including Chung and Fox (2002), Balmforth and Craster (1999), and Tkacheva (2001), whilst numerical results were

obtained for scattering by finite elastic sheets by Hermans (2004). An indication of the renewed interest in the field is the

existence of a sequence of symposia on hydroelasticity in marine environments; see, for example, Eatock Taylor (2003).

Problems involving cracks in an elastic sheet floating on water have been considered by a number of authors. Cracks

are clearly important in influencing the rate at which ice floes break up under wave action, and they have the added

attraction of yielding to exact mathematical analysis in certain cases, in contrast to problems involving finite open water

regions or finite elastic plates. The simplest such problem is the infinitely long straight-line crack in a floating elastic

sheet entirely covering the water surface. A number of authors have considered the scattering of incident flexural waves

by such a crack, including Squire and Dixon (2000), Williams and Squire (2002) and the present authors (Evans and

Porter, 2003) who solved the problem using full linear theory in finite water depth and obliquely incident waves. The

solution can be shown to depend upon two fundamental quantities, namely the jump in displacement and slope across

the free edges of the crack. In a subsequent paper (Porter and Evans, 2005) the authors showed how the method could

be extended to multiple cracks, the solution now determined by an algebraic system of 2N equations for quantities

related to the jump in slope and displacement at each of the N cracks.

In the present work we consider the more difficult and more relevant problem of the scattering of flexural waves by a

finite number of straight-line cracks, each of finite length. The problem now no longer admits an explicit solution but

requires the solution of integral equations for the unknown jumps in slope and displacement which are now functions

defined along the length of the cracks.

In previous work on infinitely long cracks in elastic plates over water the wave energy must be transmitted across the

crack through the water region. No such mechanism for transmission of wave energy is available in the corresponding

problem of an elastic sheet in vacuo. However, in the problem involving a finite length crack, as considered in this paper,

there is a nontrivial equivalent problem in the simpler in vacuo case. Thus, Andronov and Belinskii (1995), subsequently

denoted by AB95, have considered precisely this problem, namely the scattering of plane incident flexural waves by a

finite straight-line crack in an elastic plate of infinite extent. Despite this similarity, the presence of the water region

below the sheet in the present problem allows the direct transmission of wave energy to the leeward side of the crack.

For an elastic sheet in vacuo as considered by AB95, wave energy is transmitted to the leeward side of the crack solely by

diffraction from the edges of the crack.

Advantage is taken of the ideas behind the approach of AB95 in the more complicated problem considered here, and

it is remarkable how similar much of the analysis is in the single crack case. Thus their approach, like ours, is based on

the use of Fourier transforms aligned with the direction of the crack. An added complication introduced here is that we

consider multiple parallel cracks whilst AB95, by concentrating on a single crack were able to consider simpler

symmetric and antisymmetric components of the problem each defined in a half-plane. It is not possible to make such a

decomposition in the more general problem treated here, and so there is a significant departure from the work of AB95

early on in the analysis. In this respect, the foundation of the solution presented here uses recent work of Porter and

Evans (2005) who provided a solution for multiple parallel cracks of infinite length which, as discussed, has no analogue

in the problem considered by AB95.

In Section 2, we provide a statement of the linearized boundary-value problem, and discuss conditions which apply

along the cracks and at infinity. In the main part in Section 3, coupled integral equations are derived for functions

which are related to the jumps in slope and displacement across each crack. Although the analysis is more complicated

than in AB95, a vital part of this derivation is to show that the resulting integral equations are hypersingular (that is,

the kernel has a component which is two or more derivatives of a logarithm). This property is evidently a consequence

of the nature of the solution at the ends of the cracks. Details of a numerical solution based upon the Galerkin

procedure is presented in Section 4, which again draws upon the work of AB95, especially on the resolution of the

hypersingular nature of the integral operators. In Sections 5 and 6, respectively, expressions for the far-field diffraction

coefficients and stress intensity factors (SIFs) are derived. The latter quantities are of particular interest, as they

provide a measure of the likelihood that dynamic fracture occurs in the elastic sheet. Results are presented and

discussed in Section 7, and the paper is concluded in Section 8, where further generalizations to the present work are

considered.
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2. Formulation of the problem

A flexural-gravity wave propagates from infinity within an isotropic elastic plate of constant thickness d and density

rp, with Young’s modulus E and Poisson’s ratio n. The wave propagates with wavelength l at an angle yinc with respect

to the positive x-axis, where ðx; y; zÞ are Cartesian coordinates with z measured vertically upwards and z ¼ 0 coinciding

with the lower surface of the undisturbed plate. The plate rests on a fluid of density rw and constant depth h. The elastic

plate contains an arbitrary number of narrow straight cracks each of finite length which diffract the incident wave. The

cracks are parallel to one another and occupy the set L ¼
SN

i¼1Li, where Li ¼ fx ¼ ci; a�i oyoaþi g for i ¼ 1; . . . ;N.

When in motion, the lower surface of the plate is described by z ¼ zðx; y; tÞ, where t represents time. Under the usual

assumptions of linearized theory, that the fluid is inviscid and incompressible and that the flow is irrotational and

undergoes small amplitude motions, there exists a velocity Fðx; y; z; tÞ such that

r2F ¼ 0 in the fluid, (2.1)

where r ¼ ðq=qx; q=qy; q=qzÞ with Fz ¼ 0 on z ¼ �h. Within the fluid, the linearized version of Bernoulli’s equation for

the pressure pðx; y; zÞ is

p ¼ pa þ rpgd � rwFt � rwgz; �hozoz, (2.2)

where g is gravitational acceleration and pa is constant atmospheric pressure.

The motion of the plate is described using thin plate, or Kirchhoff, theory in which plate properties are averaged

across the thickness of the plate and is due to the difference in pressure across it, so that (Timoshenko and Woinowsky-

Krieger, 1959)

pjz¼z ¼ pa þ rpgd þDr4
hzþ rpd; ztt, (2.3)

where D ¼ Ed3=ð12ð1� n2ÞÞ is the flexural rigidity of the elastic plate and rh ¼ ðq=qx; q=qyÞ. Combining (2.2) on z ¼ z
with (2.3) and linearizing about z ¼ 0 gives

Dr4
hzþ rpdztt þ rwFt þ rwgz ¼ 0 on z ¼ 0. (2.4)

The kinematic condition, linearized about z ¼ 0 provides additional coupling between the fluid and the plate with

zt ¼ Fz on z ¼ 0. (2.5)

The assumption of a time harmonic motion of angular frequency o so that Fðx; y; z; tÞ ¼ Rf�iofðx; y; zÞ e�iotg and

zðx; y; tÞ ¼ RfZðx; yÞ e�iotg reduces (2.4) and (2.5) to

ðLfÞðx; yÞ � ðbr4
h þ 1� dÞZ� kfjz¼0 ¼ 0, (2.6)

where

Z ¼ fzjz¼0, (2.7)

and b ¼ D=rwg, d ¼ ðrp=rwÞkd and k ¼ o2=g, whilst

r2f ¼ 0; �hozo0 (2.8)

and

fz ¼ 0 on z ¼ �h. (2.9)

Eqs. (2.6) and (2.7) hold wherever Z is continuous which excludes the cracks where the boundary conditions are

enforced to ensure vanishing of bending moments and shearing stresses. These are given by (Timoshenko and

Woinowsky-Krieger, 1959)

ðBZÞðx; yÞ � Zxx þ nZyy ! 0;

ðSZÞðx; yÞ � Zxxx þ n1Zxyy ! 0;

)
x! c�i ; a�i oyoaþi , (2.10)

where n1 ¼ 2� n. The functions ðBZÞðx; yÞ and ðSZÞðx; yÞ are continuous away from the cracks and, on account of

(2.10), are therefore continuous for all x; y in the plane. In particular, we note the jump conditions

½ðBZÞ�i ¼ ½ðSZÞ�i ¼ 0; �1oyo1, (2.11)

which will be needed later, where we have introduced the notation

½u�i ¼ lim
x!cþ

i

fuðx; yÞg � lim
x!c�

i

fuðx; yÞg.
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There are further conditions that apply at the ends of the cracks. Thus from AB95 or Norris and Wang (1994) it is

known that

½Z�i�ð�ða
�
i � yÞÞ3=2 and ½Zx�i�ð�ða

�
i � yÞÞ1=2 as y! a�i , (2.12)

the limit being taken from within the crack.

The incident wave, which propagates in the direction yinc with respect to the positive x-axis is defined by

f0ðx; y; zÞ ¼ eim0x eil0yY 0ðzÞ

with corresponding plate elevation

Z0ðx; yÞ ¼ eim0x eil0yY 00ð0Þ, (2.13)

where Y 0ðzÞ ¼ cosh g0ðzþ hÞ and

m0 ¼ g0 cos yinc and l0 ¼ g0 sin yinc. (2.14)

Here, g0 ¼ 2p=l is the wavenumber of the incident wave and is determined as the unique positive root of the dispersion

relation

KðgÞ � ðbg4 þ 1� dÞg sinh gh� k cosh gh ¼ 0. (2.15)

In addition to g0, there are four (generally) complex roots g ¼ �p� iq, where p; q40, the two having positive imaginary

parts being labelled g�1 ¼ pþ iq and g�2 ¼ �pþ iq and an infinite sequence of pure imaginary roots, �gn, n ¼ 1; 2; . . .
arranged such that 0oIfgngoIfgnþ1g. The distribution of the roots is described in Evans and Davies (1968) or Squire

et al. (1995). For certain (unphysical) parameters the four complex roots may all become pure imaginary. A detailed

analysis is given by Williams (2005).

Relation (2.15) is derived by separating variables for a plate with no cracks which yields solutions of the form

e�ignxY nðzÞ where Y nðzÞ ¼ cosh gnðzþ hÞ, (2.16)

assuming, without loss of generality, no variation in the y-direction.

The diffracted part of the wave field satisfies the Sommerfeld radiation condition,

r1=2ður � ig0uÞ ! 0 as r ¼ ðx2 þ y2Þ1=2 !1 (2.17)

for both u ¼ Zd � Z� Z0 and u ¼ fd � f� f0, the latter holding for each fixed depth in z 2 ½�h; 0�.
3. Derivation of integral equations

We introduce the Fourier transforms

f̄ðx; l; zÞ ¼
Z 1
�1

fðx; y; zÞ e�ily dy, (3.1)

with inverse

fðx; y; zÞ ¼
1

2p

Z 1
�1

f̄ðx; l; zÞ eily dl

and

~fðk; l; zÞ ¼
Z 1
�1

ðf̄ðx; l; zÞ � f̄0ðx; l; zÞÞ e
�ikx dx (3.2)

with inverse

f̄ðx; l; zÞ ¼ f̄0ðx; l; zÞ þ
1

2p

Z 1
�1

~fðk; l; zÞ eikx dk,

where f̄0 is the transform in y of the incident wave potential and we are not concerned with evaluating this in what

follows. Functions and operators with bars or tildes will henceforth denote that they have been transformed according

to (3.1) and (3.2).
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Taking transforms in y in (2.6)–(2.9) gives

f̄xx þ f̄zz � l2f̄ ¼ 0; �hozo0; �1oxo1,

with

f̄z ¼ 0 on z ¼ �h

and

ðL̄f̄Þðx; lÞ ¼ b
q2

qx2
� l2

� �2

þ 1� d

 !
Z̄� kf̄jz¼0 ¼ 0; �1oxo1, (3.3)

where

Z̄ ¼ f̄zjz¼0.

Crucially in what is to follow, since (2.11) applies over all y (on the cracks and their extensions to infinity), we

preserve the jump conditions in transform space, implying that

½ðB̄Z̄Þðx; lÞ�i ¼ ½ðS̄Z̄Þðx; lÞ�i ¼ 0 for �1olo1, (3.4)

for i ¼ 1; . . . ;N where

ðB̄Z̄Þðx; lÞ ¼ Z̄00 � nl2Z̄ and ðS̄Z̄Þðx; lÞ ¼ Z̄000 � n1l2Z̄0, (3.5)

and where the primes denote differentiation with respect to x. Applying transforms in x now gives

~fzz � g2 ~f ¼ 0; �hozo0,

where g2 ¼ k2
þ l2 and ~fz ¼ 0 on z ¼ �h which implies that

~fðk; l; zÞ ¼ Aðk; lÞ cosh gðzþ hÞ. (3.6)

The steps that follow represent the crux of the method. We take a different approach to that of AB95 who used the

geometric symmetry of a single crack to decompose the problem into two separate problems in which various

conditions were satisfied automatically by the decomposition.

Defining ~Z ¼ ~fzjz¼0 and applying (3.2)–(3.3) now gives

0 ¼

Z 1
�1

ðL̄ðf̄� f̄0ÞÞðx; lÞ e
�ikx dx ¼ ðbg4 þ 1� dÞ~Z� k ~fjz¼0 þ bIðk; lÞ, (3.7)

where

Iðk; lÞ ¼

Z 1
�1

q2

qx2
� l2

� �2

ðZ̄� Z̄0Þ

 !
G �

q2

qx2
� l2

� �2

G

 !
ðZ̄� Z̄0Þ

( )
dx,

and we have used the abbreviation G ¼ e�ikx. Notice that (3.7) has been arranged such that the second term in the

integral I cancels the leading term, bg4 ~Z. This leaves an integral I which has a structure reminiscent of Green’s identity

(G is introduced to highlight this connection), but which does not vanish identically on account of the discontinuous

nature of the function Z̄ and its derivatives. Hence, the integral I must be calculated by dividing the range of integration

over discrete intervals which exclude the values x ¼ ci, at which Z̄ and its derivatives possess discontinuities, before then

taking limits. This process results, after integration by parts, in

Iðk; lÞ ¼
XN

i¼1

f½Z̄000G � G000Z̄�i � ½Z̄
00G0 � G00Z̄0�i � 2l2½Z̄0G � G0Z̄�ig,

where the fact that Z̄0 and its derivatives in x are continuous functions has been used.

The contribution from the limits as jxj ! 1 in the integral have been set to zero by assuming a small negative

imaginary part in the frequency which will eventually tend to zero. This has the effect of moving the real wavenumber

k0 into the upper-half complex plane, ensuring that Z̄� Z̄0 decays exponentially as jxj ! 1.

Using the transformed jump conditions (3.4) with (3.5) to eliminate Z̄000 and Z̄00 gives

Iðk; lÞ ¼
XN

i¼1

fðG00 � nl2GÞx¼ci
½Z̄0�i � ðG

000 � n1l2G0Þx¼ci
½Z̄�ig, (3.8)
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after some rearrangement in which the relation nþ n1 ¼ 2 and the fact that G and its derivatives are continuous for all x

are used. Using the definition of the operators B̄ and S̄ in (3.8) gives

Iðk; lÞ ¼
XN

i¼1

fðB̄GÞðci; lÞP̄iðlÞ � ðS̄GÞðci; lÞQ̄iðlÞg, (3.9)

where we have introduced the functions P̄iðlÞ ¼ ½Z̄0�i, Q̄iðlÞ ¼ ½Z̄�i, for i ¼ 1; 2; . . . ;N. Thus, Iðk; lÞ depends upon the

lateral position, ci of each crack in an explicit way, but also the length of each crack implicitly through the functions

P̄iðlÞ and Q̄iðlÞ, which are the Fourier transforms of the jumps in the gradient and elevation along x ¼ ci.

We note from the definition of G ¼ e�ikx that

ðB̄GÞðci; lÞ ¼ �ðk
2
þ nl2Þ e�ikci ,

ðS̄GÞðci; lÞ ¼ ikðk2
þ n1l2Þ e�ikci .

Using (3.6) in (3.7) gives

Aðk; lÞ ¼ bIðk; lÞ=KðgÞ,

where KðgÞ is given by (2.15) and Iðk; lÞ is given by (3.9) and so

f̄ðx; l; zÞ ¼
b
2p

Z 1
�1

cosh gðzþ hÞ

KðgÞ
Iðk; lÞ eikx dk. (3.10)

At this point it is convenient to define the related function

w̄ðx; l; zÞ ¼
1

2p

Z 1
�1

cosh gðzþ hÞ

KðgÞ
eikx dk, (3.11)

and are reminded that the small imaginary part in the frequency has moved the poles (for log0) at k0 and �k0 into the

upper- and lower-half planes, respectively, where

g2n ¼ k2
n þ l2; n ¼ �2;�1; 0; 1; . . . ,

and gn are the zeros of KðgÞ, as defined by (2.14). By deforming the contour of integration into the upper-half plane for

x40 and into the lower-half plane for xo0, the integral in (3.11) can be expressed as an infinite series, thus

w̄ðx; l; zÞ ¼ i
X1

n¼�2

Y 0nð0ÞY nðzÞ

2knCn

eiknjxj,

where Cn ¼
1
2ðkhþ ð5bg4n þ 1� dÞðY 0nð0ÞÞ

2
Þ and Y nðzÞ are the depth eigenfunctions defined by (2.16). In this derivation,

we have used the relation K 0ðgnÞ ¼ �K 0ð�gnÞ ¼ 2knCn=Y 0nð0Þ.

It can be noticed that the function w which gives rise to w̄ in (3.11) represents a fundamental point source on the

elastic-plate loaded free surface.

It is now straightforward to show, by taking (3.10) with (3.9), that

f̄ðx; l; zÞ ¼ f̄0ðx; l; zÞ þ
XN

i¼1

fc̄sðx� ci; l; zÞP̄iðlÞ þ c̄aðx� ci; l; zÞQ̄iðlÞg,

where we have defined

c̄sðx; l; zÞ ¼ bðB̄w̄Þðx; l; zÞ and c̄aðx; l; zÞ ¼ �bðS̄w̄Þðx; l; zÞ.

In terms of infinite series, we have

c̄sðx; l; zÞ ¼ ib
X1

n¼�2

gnY 0nð0Þ

2knCn

Y nðzÞ e
ikn jxj

and

c̄aðx; l; zÞ ¼ �ib sgnðxÞ
X1

n¼�2

hnY 0nð0Þ

2knCn

Y nðzÞ e
iknjxj,

where sgnðxÞ is the signum function and

gn ¼ �ðnl
2
þ k2

nÞ and hn ¼ �iknðn1l2 þ k2
nÞ.
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The suffices s and a have been chosen since it can easily be seen that the functions c̄s and c̄a are symmetric and

antisymmetric (respectively) about x ¼ 0.

We are now in a position to make the inverse transform in y. Thus

fðx; y; zÞ ¼ f0ðx; y; zÞ þ
1

2p

XN

i¼1

Z 1
�1

fc̄sðx� ci; l; zÞP̄iðlÞ þ c̄aðx� ci; l; zÞQ̄iðlÞg e
ily dl. (3.12)

Integral equations for the functions PiðtÞ and QiðtÞ, i ¼ 1; 2; . . . ;N are now obtained by applying the free edge

conditions (2.10) before using convolution to invert the transform. Since the expression for fðx; y; zÞ in (3.12) has the

jump conditions (2.11) already incorporated, these edge conditions need only be applied from one of the two sides.

Thus, we have

�ðBZ0Þðcj ; yÞ ¼
1

2p

XN

i¼1

Z 1
�1

fP̄iðlÞK̄sðdji; lÞ þ Q̄iðlÞK̄aðdji; lÞg e
ily dl; y 2 ða�j ; a

þ
j Þ, (3.13)

where dji ¼ cj � ci and

K̄sðdji; lÞ ¼ ðB̄w̄sÞðdji; lÞ ¼ ib
X1

n¼�2

g2nðY
0
nð0ÞÞ

2

2knCn

eiknjdji j

K̄aðdji; lÞ ¼ ðB̄w̄aÞðdji; lÞ ¼ �ib sgnðdjiÞ
X1

n¼�2

gnhnðY
0
nð0ÞÞ

2

2knCn

eikn jdji j

9>>>>=
>>>>;

(3.14)

and we have written w̄s;aðx; lÞ ¼ qc̄s;a=qzjz¼0. Application of the zero-stress condition similarly gives

�ðSZ0Þðcj ; yÞ ¼
1

2p

XN

i¼1

Z 1
�1

fP̄iðlÞL̄sðdji; lÞ þ Q̄iðlÞL̄aðdji; lÞge
ily dl; y 2 ða�j ; a

þ
j Þ, (3.15)

where

L̄sðdji; lÞ ¼ ðS̄w̄sÞðdji; lÞ ¼ ib sgnðdjiÞ
X1

n¼�2

gnhnðY
0
nð0ÞÞ

2

2knCn

eikn jdji j;

L̄aðdji; lÞ ¼ ðS̄w̄aÞðdji; lÞ ¼ �ib
X1

n¼�2

h2nðY
0
nð0ÞÞ

2

2knCn

eiknjdji j:

9>>>>=
>>>>;

(3.16)

The case of dji ¼ 0 will be treated shortly. At this point we remark that Eqs. (3.13) and (3.15) represent integral

equations for the functions P̄iðlÞ, Q̄iðlÞ for �1olo1. However, these integral equations are not in a particularly

suitable form for computation. In particular, the behaviour of the unknown functions P̄iðlÞ, Q̄iðlÞ for large jlj are not

known at this stage.

Instead, we will derive an alternative set of integral equations which are more amenable to numerical methods. In

order to do so, we need to analyse the convergence of the series which define K̄s;aðdji; lÞ and L̄s;aðdji; lÞ and their

behaviour for large jlj which is required to interpret the inverse transforms of these functions correctly.

First, we make the definition kn ¼ imn where mn ¼ ðl
2
� g2nÞ

1=2 when jlj4gn. Then it is clear that for djia0, all series

occurring in (3.14) and (3.16) are exponentially convergent as jlj ! 1. Therefore, we concentrate on the case when

j ¼ i and dji ¼ 0. In this case, we may write

K̄sð0; lÞ ¼ b
X1

n¼�2

g2n
2mn

tðgnÞ;

L̄að0; lÞ ¼ �b
X1

n¼�2

h2n
2mn

tðgnÞ;

9>>>>=
>>>>;

(3.17)

where it was shown in the Appendix of Evans and Porter (2003) that

tðgnÞ ¼
ðY 0nð0ÞÞ

2

Cn

¼ Oðn�8Þ as n!1,
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which ensures that the series in (3.17) are convergent. We also note that gn ¼ ðl
2
ð1� nÞ � g2nÞ and hn ¼ mnðl

2
ð1� nÞ þ g2nÞ.

Also, the following identities were proved in the Appendix of Evans and Porter (2003),

X1
n¼�2

tðgnÞ ¼ 0;
X1

n¼�2

g2ntðgnÞ ¼ b�1 and
X1

n¼�2

g4ntðgnÞ ¼ 0. (3.18)

In addition to (3.17), it can be shown from (3.14) and (3.16), after some algebra, that

K̄að0; lÞ ¼ �L̄sð0; lÞ ¼ b
X1

n¼�2

ðg4n � ð1� nÞ2l4Þ

2
tðgnÞ ¼ 0,

using (3.18). Returning to (3.17), it can be shown that

g2n
mn

¼ ð1� nÞ2l2jlj 1�
3þ n
1� n

� �
g2n
2l2
þ CðnÞ

g4n
l4
þ O

1

l6

� �� �
as jlj ! 1; fixed n, (3.19)

for some function CðnÞ that we do not need to calculate. Using this in (3.17) with the identities (3.18) shows that

K̄sð0; lÞ� � 1
4
ð3þ nÞð1� nÞjlj þ Oð1=jlj3Þ as jlj ! 1.

Some care is required in taking this limit. Briefly, the summation in (3.17) must be divided into two parts, defined by the

size of jlj, estimating the second half to be Oð1=jlj5Þ before taking the limit jlj ! 1.

A similar procedure for L̄að0; lÞ gives

L̄að0; lÞ� � 1
4
ð3þ nÞð1� nÞl2jlj þ Oð1=jljÞ as jlj ! 1.

Thus we define

K̄sð0; lÞ ¼ �sjlj þ K̄
0

sð0; lÞ; L̄að0; lÞ ¼ �sl2jlj þ L̄
0

að0; lÞ, (3.20)

where s ¼ 1
4
ð3þ nÞð1� nÞ and where K̄

0

sð0; lÞ�Oð1=jlj
3Þ and L̄

0

að0; lÞ�Oð1=jljÞ as jlj ! 1. The form of (3.20) is in exactly

the same form as in AB95 where a similar procedure was used. Although this is perhaps to be expected, the asymptotic

result in AB95 was explicit from their formulation. In contrast, however, the derivation of the asymptotic results here

for the more complicated case of an elastic plate bounded by a fluid has required some detailed analysis.

It follows that the inverse transforms may be written as

Ksð0; yÞ ¼ �
s
p
d2

dy2
ln jyj þ K 0sð0; yÞ; Lað0; yÞ ¼

s
p
d4

dy4
ln jyj þ L0að0; yÞ,

where

Ks;aðx; yÞ ¼
1

2p

Z 1
�1

K̄s;aðx; lÞ e
ily dl.

with corresponding definitions for Ls;aðx; yÞ, K 0sðx; yÞ and L0aðx; yÞ. It is also readily shown that K 0sð0; yÞ�jyj
3 and

L0að0; yÞ�jyj as y! 0. We note that the functions Ks;aðx; yÞ are not known explicitly and will effectively be inverted

numerically as part of the numerical scheme (see later Eqs. (4.8)–(4.10)).

Returning to (3.13) and (3.15), we can implement the convolution theorem to give

f ðcj ; yÞ ¼ �
s
p
d2

dy2

Z aþ
j

a�
j

PjðtÞ ln jy� tjdtþ

Z aþ
j

a�
j

PjðtÞK
0
sð0; y� tÞdt

þ
XN

i¼1
aj

Z aþ
i

a�
i

fPiðtÞKsðdji; y� tÞ þQiðtÞKaðdji; y� tÞgdt; y 2 ða�j ; a
þ
j Þ ð3:21Þ

and

gðcj ; yÞ ¼
s
p
d4

dy4

Z aþ
j

a�
j

QjðtÞ ln jy� tjdtþ

Z aþ
j

a�
j

QjðtÞL
0
að0; y� tÞdt

þ
XN

i¼1
aj

Z aþ
i

a�
i

fPiðtÞLsðdji; y� tÞ þQiðtÞLaðdji; y� tÞgdt; y 2 ða�j ; a
þ
j Þ, ð3:22Þ
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both for j ¼ 1; 2; . . . ;N, where

f ðcj ; yÞ ¼ �ðBZ0Þðcj ; yÞ and gðcj ; yÞ ¼ �ðSZ0Þðcj ; yÞ.

Also,

PiðyÞ � ½Zx�i ¼
1

2p

Z 1
�1

P̄iðlÞ e
ily dl and QiðyÞ � ½Z�i ¼

1

2p

Z 1
�1

Q̄iðlÞ e
ily dl

for i ¼ 1; 2; . . . ;N represent the jumps in the gradient and elevation across each of the N cracks which are clearly zero if

yeða�i ; a
þ
i Þ.

We remark here that, when iaj but dji ¼ 0 as would occur in the case of distinct parallel cracks, there is no singular

behaviour in the corresponding kernels of the integral operators and no special attention is required.

The 2N coupled integral equations in (3.21) and (3.22) for the 2N unknowns PiðtÞ, QiðtÞ, i ¼ 1; 2; . . . ;N are in a

suitable form for computation. We remark that when there is only one crack, the pair of integral equations decouple

into one for P1ðtÞ and one for Q1ðtÞ.

Finally, we note from the definition of Z0 in (2.13) that

f ðcj ; yÞ ¼ ðm
2
0 þ nl20Þ e

im0cj Y 00ð0Þ e
il0y, (3.23)

and

gðcj ; yÞ ¼ im0ðm
2
0 þ n1l20Þ e

im0cj Y 00ð0Þe
il0y, (3.24)

where m0 and l0 are defined by (2.14).
4. Approximation to solution of the integral equations

Guided by the analysis describing the local behaviour at the ends of cracks resulting in (2.12) we assume the following

representations for the unknowns in (3.21) and (3.22):

PiðtÞ ¼
1

s3i

X1
n¼0

aðiÞn

einp=2

ðnþ 1Þ
pðiÞn ðtÞ; t 2 ða�i ; a

þ
i Þ, (4.1)

and

QiðtÞ ¼
2

s4i

X1
n¼0

bðiÞn

einp=2

ðnþ 1Þðnþ 2Þðnþ 3Þ
qðiÞn ðtÞ; t 2 ða�i ; a

þ
i Þ, (4.2)

where

pðiÞn ðtÞ ¼ fða
þ
i � tÞðt� a�i Þg

1=2Unððt� tiÞ=siÞ;

qðiÞn ðtÞ ¼ fða
þ
i � tÞðt� a�i Þg

3=2Cð2Þn ððt� tiÞ=siÞ;

)

and where si ¼
1
2
ðaþi � a�i Þ and ti ¼

1
2
ðaþi þ a�i Þ define the half-length and midpoint, respectively, of the ith crack. See

Fig. 1. The coefficients aðiÞn , bðiÞn , for i ¼ 1; 2; . . . ;N are to be determined and pðiÞn ðtÞ, qðiÞn ðtÞ are weighted test functions

defined in terms of UnðxÞ � Cð1Þn ðxÞ and Cð2Þn ðxÞ being the Chebychev polynomial of the second kind and the

ultraspherical Gegenbauer polynomial, respectively. These are orthogonal polynomials which satisfy the orthogonality

relationshipsZ a�i

aþ
i

pðiÞn ðtÞUmððt� tiÞ=siÞdt ¼
1

2
ps2i dmn;

Z aþ
i

a�
i

qðiÞn ðtÞC
ð2Þ
m ððt� tiÞ=siÞdt ¼

1

8
ps4i ðmþ 3Þðmþ 1Þdmn.

The extra normalizing factors are included in (4.1) and (4.2) for later algebraic convenience and also to ensure that PiðtÞ

and QiðtÞ are dimensionally correct.

Similar expansions were used by AB95, who also noted that the functions UnðxÞ and Cð2Þn ðxÞ may be regarded as the

eigenfunctions of the singular parts of the integral equations in the sense that they satisfy

d2

dy2

Z aþ
i

a�
i

ln jy� tjpðiÞn ðtÞdt ¼ pðnþ 1ÞUnððy� tiÞ=siÞ (4.3)
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Fig. 1. Definition of geometrical parameters used to define the ith crack.
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and

d4

dy4

Z aþ
i

a�
i

ln jy� tjqðiÞn ðtÞdt ¼ �pðnþ 3Þðnþ 2Þðnþ 1ÞCð2Þn ððy� tiÞ=siÞ, (4.4)

for y 2 ða�i ; a
þ
i Þ (note that AB95 have omitted a minus sign in error in their version of (4.4)).

In what follows, we will also make use of the resultsZ aþ
i

a�
i

eiltpðiÞn ðtÞdt ¼
eilti einp=2ðnþ 1Þps2i

lsi

Jnþ1ðlsiÞ (4.5)

and Z aþ
i

a�
i

eiltqðiÞn ðtÞdt ¼
eilti einp=2ðnþ 3Þðnþ 2Þðnþ 1Þps4i

2ðlsiÞ
2

Jnþ2ðlsiÞ, (4.6)

[see for example, Gradshteyn and Ryzhik (1980)] where JnðzÞ is the Bessel function.

A Galerkin method is used to transform the coupled integral equations (3.21) and (3.22) into a coupled linear system

of algebraic equations for the coefficients aðiÞn , bðiÞn . To summarize this process, we substitute (4.1) and (4.2) into (3.21)

and (3.22), multiply through the first of these by pðjÞm ðyÞ and the second by qðjÞm ðyÞ and integrate over a�j oyoaþj .

Thus, after substituting (4.1) and (4.2) into (3.21) we find that

f ðcj ; yÞ ¼ �
s
s3j

X1
n¼0

aðjÞn einp=2Unððy� tjÞ=sjÞ þ
1

2sj

X1
n¼0

aðjÞn

Z 1
�1

K̄
0

sð0; lÞ e
ilðy�tj Þ

Jnþ1ðlsjÞ

lsj

dl

þ
XN

i¼1
aj

1

2si

X1
n¼0

aðiÞn

Z 1
�1

K̄sðdji; lÞ e
ilðy�tiÞ

Jnþ1ðlsiÞ

lsi

dl þ
XN

i¼1
aj

1

2

X1
n¼0

bðiÞn

Z 1
�1

K̄aðdji; lÞ e
ilðy�tiÞ

Jnþ2ðlsiÞ

ðlsiÞ
2

dl,

where (4.3)–(4.6) have been used. After multiplying through by pðjÞm ðyÞ and integrating over a�j oyoaþj we find, after

considerable algebra, that

F ðjÞm ¼
�s
ðmþ 1Þ

aðjÞm þ
X1
n¼0

aðjÞn K
0ðjÞ
s;ðmnÞ þ

XN

i¼1
aj

X1
n¼0

ðaðiÞn K
ðijÞ
s;ðmnÞ þ bðiÞn K

ðijÞ
a;ðmnÞÞ, (4.7)

for j ¼ 1; 2; . . . ;N, m ¼ 0; 1; . . . : Here,

K
0ðjÞ
s;ðmnÞ ¼

Z 1
�1

fsjK̄
0

sð0; lÞg
Jnþ1ðlsjÞJmþ1ðlsjÞ

ðlsjÞ
2

dðlsjÞ, (4.8)
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K
ðijÞ
s;ðmnÞ ¼

Z 1
�1

fsjK̄sðdji; lÞg e
ilðtj�tiÞ

Jnþ1ðlsiÞJmþ1ðlsjÞ

ðlsiÞ
2

dðlsjÞ (4.9)

and

K
ðijÞ
a;ðmnÞ ¼

Z 1
�1

fs2j K̄aðdji; lÞg e
ilðtj�tiÞ

Jnþ2ðlsiÞJmþ1ðlsjÞ

ðlsiÞ
2
ðlsjÞ

dðlsjÞ, (4.10)

where the terms in braces are nondimensional. Also,

F ðjÞm ¼
2sj e

�imp=2

pðmþ 1Þ

Z aþ
j

a�
j

f ðcj ; yÞp
ðjÞ
m ðyÞdy ¼ 2s3j ðm

2
0 þ nl20ÞY

0
0ð0Þ e

iðm0cjþl0tj Þ
Jmþ1ðl0sjÞ

ðl0sjÞ
, ð4:11Þ

using the definition of f ðcj ; yÞ in (3.23) and (4.5).

We follow the same steps for the treatment of (3.21). Thus, substitution of (4.1) and (4.2) gives, after some tidying up

gðcj ; yÞ ¼ �
2s
s4j

X1
n¼0

bðjÞn einp=2Cð2Þn ððy� tjÞ=sjÞ þ
1

4

X1
n¼0

bðjÞn

Z 1
�1

L̄
0

að0; lÞ e
ilðy�tj Þ

Jnþ2ðlsjÞ

ðlsjÞ
2

dl

þ
XN

i¼1
aj

1

2si

X1
n¼0

aðiÞn

Z 1
�1

L̄sðdji; lÞ e
ilðy�tiÞ

Jnþ1ðlsiÞ

lsi

dl þ
XN

i¼1
aj

1

2

X1
n¼0

bðiÞn

Z 1
�1

L̄aðdji; lÞ e
ilðy�tiÞ

Jnþ2ðlsiÞ

ðlsiÞ
2

dl.

Multiplication by qðjÞm ðyÞ and integration over a�j oyoaþj results in

GðjÞm ¼ �
s

ðmþ 2Þ
bðjÞm þ

X1
n¼0

bðjÞn L
0ðjÞ
a;ðmnÞ þ

XN

i¼1
aj

X1
n¼0

ðaðiÞn L
ðijÞ
s;ðmnÞ þ bðiÞn L

ðijÞ
a;ðmnÞÞ, (4.12)

for j ¼ 1; 2; . . . ;N, m ¼ 0; 1; . . . where

L
0ðjÞ
a;ðmnÞ ¼

Z 1
�1

fs3j L̄
0

sð0; lÞg
Jnþ2ðlsjÞJmþ2ðlsjÞ

ðlsjÞ
4

dðlsjÞ, (4.13)

L
ðijÞ
s;ðmnÞ ¼

Z 1
�1

fs2j L̄sðdji; lÞg e
ilðtj�tiÞ

Jnþ1ðlsiÞJmþ2ðlsjÞ

ðlsiÞ
2
ðlsjÞ

dðlsjÞ (4.14)

and

L
ðijÞ
a;ðmnÞ ¼

Z 1
�1

fs3j L̄aðdji; lÞ e
ilðtj�tiÞ

Jnþ2ðlsiÞJmþ2ðlsjÞ

ðlsiÞ
2
ðlsjÞ

2
dðlsjÞ. (4.15)

As before, the braces include nondimensional quantities. Finally,

GðjÞm ¼
4sj e

�imp=2

pðmþ 1Þðmþ 2Þðmþ 3Þ

Z aþ
j

a�
j

gðcj ; yÞq
ðjÞ
m ðyÞdy ¼ 2is4j m0ðm

2
0 þ n1l20ÞY

0
0ð0Þ e

iðm0cjþl0tj Þ
Jmþ2ðl0sjÞ

ðl0sjÞ
2

(4.16)

using the definition of gðcj ; yÞ in (3.24) and (4.6).

In terms of numerical implementation, advantage can be taken of various symmetry relations including s4i K
ðijÞ
s;ðmnÞ ¼

�ð�1Þmþns4j K
ðjiÞ
s;ðnmÞ, and s4i L

ðijÞ
s;ðmnÞ ¼ ð�1Þ

mþns4j K
ðjiÞ
a;ðnmÞ for example, which follow from relations (3.14), (3.16).

Notice also that the positioning of each crack, with centres ðci; tiÞ occur as differences in exponentials in the

combinations eiknjcj�ci j eilðtj�tiÞ. This means that the iaj terms essentially contain information about the relative distance

and orientation of each of the cracks with respect to one another rather than each to some fixed origin of reference,

whilst the sizes of the cracks appear separately as other multiplying terms. This, of course, is not surprising and it allows

one to identify the wave interaction effects between each pair of cracks from these terms. In particular, one might be

inclined to make a simplifying approximation, akin to the well-known wide-spacing approximation, in which only the

propagating wave modes are retained in the interaction between two ‘widely’ separated cracks. In this case it is clear

that one discards all but the n ¼ 0 mode in the infinite sums which define the transform functions K̄s;aðdji; lÞ, L̄s;aðdji; lÞ.
However, there is little to be gained by such a procedure as there is no further analytic progress that could be made and

the numerical savings are not especially significant.
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5. Far-field diffracted wave amplitudes

The first task here is to represent the transforms of the functions PiðyÞ and QiðyÞ in terms of the coefficients aðiÞn and

bðiÞn introduced in (4.1) and (4.2). Thus, we find using (4.5) that

P̄iðlÞ ¼

Z aþ
i

a�
i

PiðyÞ e
�ily dy ¼ e�ilti

p
si

X1
n¼0

aðiÞn

Jnþ1ðlsiÞ

lsi

(5.1)

and using (4.6) that

Q̄iðlÞ ¼

Z aþ
i

a�
i

QiðyÞ e
�ily dy ¼ e�iltip

X1
n¼0

bðiÞn

Jnþ2ðlsiÞ

ðlsiÞ
2

. (5.2)

Far away from the cracks, the wave field is a superposition of the incident plane wave, f0, and components of the

diffracted field from each of the cracks. Thus we write the latter part as

fd ðr; y; zÞ ¼ f� f0�
XN

i¼1

ðUiðr; yÞ þ Viðr; yÞÞY 0ðzÞ as r!1, (5.3)

where r ¼ ðx2 þ y2Þ1=2 and x ¼ r cos y, y ¼ r sin y. Here, we have anticipated the fact that only the terms proportional to

Y 0ðzÞ will contribute to the wave field at large distances and written

Uiðr; yÞ � Uiðri; yiÞ ¼ lim
ri!1

ibY 00ð0Þ

4pC0

Z 1
�1

g0
k0

eilti P̄iðlÞ e
ik0ri j cos yi j eilri sin yi dl (5.4)

and

Viðr; yÞ � Viðri; yiÞ ¼ lim
ri!1

�ibY 00ð0Þ

4pC0

Z 1
�1

h0

k0
eilti Q̄iðlÞsgnðx� ciÞ e

ik0ri j cos yi j eilri sin yi dl, (5.5)

and defined x� ci ¼ ri cos yi, y� ti ¼ ri sin yi. These represent polar coordinates based on the centre of the ith crack

(see Fig. 2). There is clearly a relationship between the global polar coordinate system ðr; yÞ and each of the local

coordinate systems ðri; yiÞ, i ¼ 1; 2; . . . ;N but we do not need to know these explicitly. Instead, we note that as r!1

yi ! y and ri ! r� Ri cosðai � yÞ, (5.6)

where Ri ¼ ðc
2
i þ t2i Þ

1=2, ai ¼ tan�1ðti=ciÞ. As a passing remark, note that the argument of the exponentials in (4.11) and

(4.16), namely iðm0cj þ l0tjÞ can now be written as i g0Rj cosðaj � yincÞ where (2.14) has been used and yinc is the incident
wave angle.

Returning to (5.4) and (5.5), we note the symmetry relations Uiðri; yiÞ ¼ Uiðri; p� yiÞ and Viðri; yiÞ ¼ �Viðri; p� yiÞ,

which means that each expression needs only be considered for �1
2
poyio1

2
p.

We make the change of variable l ¼ g0 sinw, implying that k0 ¼ g0 cosw, where w is a complex number. Then, for

example in (5.4), we have

Uiðri; yiÞ ¼ lim
ri!1

�ibY 00ð0Þ

4pC0

Z
C

g20ðcos
2 wþ n sin2 wÞ eig0ti sinwP̄iðg0 sinwÞ eig0ri cosðyi�wÞ dw

and the contour C is comprised of the three straight line segments C1 [ C2 [ C3 where C1 :¼ f�1
2
pþ yiowo� 1

2
pþ

yi þ i1g, C2:¼f�1
2
pþ yiowo1

2
pþ yig, and C3:¼f12pþ yi � i1owo1

2
pþ yig. As ri !1, the dominant contribution to

the integral is from the saddle point at w ¼ yi which is calculated by steepest descent to give

Uiðri; yiÞ ¼
2p
g0ri

� �1=2

eig0ri�ip=4 �ibY 00ð0Þ

4pC0
g20ðcos

2 yi þ n sin2 yiÞ e
ig0ti sin yi P̄iðg0 sin yiÞ

� �
.

A similar analysis for Viðri; yiÞ shows that

Viðri; yiÞ ¼
2p
g0ri

� �1=2

eig0ri�ip=4 �
bY 00ð0Þ

4pC0
g30 cos yiðcos

2 yi þ n1 sin
2 yiÞ e

ig0ti sin yi Q̄iðg0 sin yiÞ

� �
.

Bringing these results together in (5.3) using (5.6) gives

fd ðr; y; zÞ�
2p
g0r

� �1=2

eig0r�ip=4Y 0ðzÞAðyÞ as r!1, (5.7)
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where the diffraction coefficient is defined as

AðyÞ ¼
bg20Y 00ð0Þ

4pC0

XN

i¼1

f�iðcos2 yþ n sin2 yÞ eig0ti sin yP̄iðg0 sin yÞ

� g0 cos yðcos
2yþ n1 sin

2 yÞ eig0ti sin yQ̄iðg0 sin yÞg e
�ig0Ri cosðai�yÞ. ð5:8Þ

This expression can be posed in terms of the coefficients aðiÞn and bðiÞn after substituting from (5.1) and (5.2) whence it can

be noticed that the resulting expressions can be written in terms of Ri and ai and not explicitly on ti.

An expression for representing conservation of energy can be found by using Green’s identity with the function f and

fn. A lengthy calculation leads to

S ¼
1

2p

Z 2p

0

jAðyÞj2 dy ¼ �
1

p
RfAðyincÞg, (5.9)

where S is often referred to as the scattering cross-section. The result (5.9) is well-known and applies in many wave

scattering theories (e.g. in optics, acoustics, electromagnetics) where it is referred to as an ‘optical theorem’. In the

context of thin elastic plates under fluid loading the optical theorem has been derived by, for example, Belinskiy and

Kouzov (1980), Belinskiy (1982) and more recently by Norris and Vermula (1995).
6. Stress intensity at the edges of the cracks

An important quantity in determining the possibility of dynamic fracture at one end of a crack is the SIF (see, for

example, Hertzberg, 1996). According to the mathematical model, the stress at the tip of the crack is unbounded, although

the model does not allow for the plastic deformation which occurs at the edge of the crack. Thus, the SIF is defined by

K�i ¼ lim
y!a�

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2pðy� a�i Þ

q
sxðci; yÞ,

where sxðci; yÞ is the lateral stress along x ¼ ci and the limits are approached from below a�i and above aþi (i.e. from

within the elastic plate). If the value of K�i exceeds a particular critical value, usually determined experimentally, then it

is likely that there will be a fracture occur at the tip of the crack. Here, the stress is given by (Timoshenko and

Woinowsky-Krieger, 1959)

sx ¼
Ed

2ð1� n2Þ
n
q2Z
qx2
þ

q2Z
qy2

� �
.

On account of the definition of K�i , it is only the most singular part of the stress which contributes. In a similar

manner to the development of the integral equations seen earlier, we find after lengthy algebra that

sxðci; yÞ�
3Edð1� nÞ
8ð1þ nÞ

�
1

p
d2

dy2

Z aþ
i

a�
i

ln jy� tjPiðtÞdt

 !

plus bounded terms. Using the expansion for PiðtÞ, changes of variables in y and t, and the result (see, for example,

AB95) valid for jyj41

�
1

p
d2

dy2

Z 1

�1

ln jy� tjð1� t2Þ1=2UnðtÞdt ¼
jyj

ð1� y2Þ1=2
UnðyÞ þ sgnðyÞð1� y2Þ1=2U 0nðyÞ �

1
2
ðnþ 1ÞUnðyÞ,

it can be shown that

K�i ¼ i

ffiffiffiffi
p
si

r
3Edð1� nÞ
8s2i ð1þ nÞ

� �X1
n¼0

aðiÞn e�inp=2. (6.1)

7. Numerical results

Results are obtained by computing coefficients aðiÞn , bðiÞn from the truncated version of the coupled infinite system of

equations in (4.7) and (4.12). The truncation size reflects the number of terms used in the expansion of the functions
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representing the jumps in gradient and elevation across the crack. These functions have been chosen to incorporate the

correct behaviour at the ends of the crack, and therefore only a small number of terms are needed for a high degree of

accuracy in quantities of interest. The number of terms required depends upon the incident wavenumber g0 and the

length of the crack 2si, i ¼ 1; . . . ;N; larger values of g0si require more terms than smaller values. Typically, only five

terms are required, and in the most extreme cases considered here 10 terms are used, with a view to achieving at least

three decimal places accuracy in quantities of interest at all times. Eqs. (4.7) and (4.12) require the computation of

infinite integrals, all of which can be transformed into semi-infinite integrals. The convergence of these integrals can also

be calculated using the asymptotics of Bessel functions for large argument, along with the large jlj asymptotics for the

infinite sums, previously discussed in relation to determining the inversion of the Fourier transforms in Section 3. Thus,

integrals can be accurately and efficiently calculated by truncation to an appropriate upper limit.

The energy relation (5.9) is successfully used as a check of the accuracy of computed results, though the integral

defining the left-hand side of (5.9) must inevitably be approximated. Indication from numerical experiments suggests

that (5.9) is automatically satisfied by the formulation and should not be used as an indication of convergence of the

results as a function of truncation size. This is a common feature of problems posed in terms of integral equations and

approximated using Galerkin methods [see Porter (1995) for example].

For all results presented, the following values for physical parameters are used: E ¼ 5� 109 Pa, n ¼ 0:3,
rw ¼ 1025 kgm�3, rp ¼ 925:5 kgm�3, g ¼ 9:81m s�2, d ¼ 1m, h ¼ 40m. Varying the ice thickness or the water depth

leads to the same qualitative behaviour in the results [see Evans and Porter (2003) for example]. The range of

wavelengths to be considered varies from l ¼ 50m to l ¼ 200m, which translates into a range of (nondimensional)

incident wavenumbers from g0d ¼ 0:1256 to g0d ¼ 0:0314, respectively. These parameter values are within the range for

ice sheets suggested by Squire et al. (1995).

The first case we consider is the simplest, being wave interaction with a single crack. For illustrative purposes we take

the crack to be 200m in length, the same length as the maximum wavelength and four times the shortest wavelength

considered. In order to illustrate as much qualitative behaviour as possible, we present in Figs. 2–3 three-dimensional

plots, each measuring the modulus of the diffraction coefficient, jAðyÞj as a function of observation angle y and one

other variable. In the first set of two figures, Fig. 2(a,b), we show the variation in jAðyÞj with g0d for the case of (a)

yinc ¼ 0� (hereafter referred to as ‘‘beam’’ incidence) and (b) yinc ¼ 90� (referred to as ‘‘head’’ incidence). In each case,

only half of the y range is required as there is symmetry with y in jAðyÞj. As expected, there is significantly more energy

diffracted under beam incidence than for head incidence, and this energy is mainly propagated in the directions around

y ¼ 0 and p. For head incidence, the diffracted wave energy has a more complex structure as a function of y, especially
as the wavenumber g0d is increased.

In Figs. 3(a,b) we show the variation of jAðyÞj as a function of y with varying yinc for values of (a) g0d ¼ 0:0628
ðl ¼ 100mÞ and (b) g0d ¼ 0:1256 ðl ¼ 50mÞ. In each case, only the range 0�pyincp90� (from beam incidence around to

head incidence) needs to be considered due to the symmetries in the geometry. In both cases, the most wave energy is

diffracted along the directions y ¼ yinc and y ¼ p� yinc which correspond to the reflected and transmitted wave angles
(a) (b)
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for an infinitely long crack. At the higher frequency (Fig. 3), the diffracted wave energy is more focussed along these

lines, as might be expected.

A snapshot in time of the plate elevation for the diffracted part of the wave, Zd is given in Figs. 4 and 5 in the case of a

single crack. The total wave field requires the superposition of the incident wave field Zinc, which is assumed to have unit

amplitude. In both cases, symmetry in the diffraction wave pattern means that only half the plate needs to be plotted,

and this allows us to illustrate the elevation of the plate along the cracks. In Fig. 4, we consider high-frequency beam

incidence upon a crack of length 50m. Most of the diffracted wave energy is along y ¼ 0deg and 180 deg. The maximum

plate elevation occurs along each side of the crack, and in this example is over three times the amplitude of the incidence

wave.

In Fig. 5 a crack of length 200m is under head incidence and now we can observe the plate elevation along the edge of

the crack x ¼ 0, �100oyo100. Here, the plate elevation is symmetrical about x ¼ 0. The feature to note here, common

in a range of similar examples computed numerically, is the large peaks in the plate elevation at the two ends of the

cracks. The diffracted wave energy is scattered over a range of angles, with very little reflected back towards the source.
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There are many different configurations of cracks that we might consider. With two cracks, the most interesting

effects occur when one crack is placed directly behind the other, as this introduces the possibility of resonance in the

strip between the two cracks. To illustrate this effect, in Fig. 6 we consider the case of beam incidence upon two cracks,

both 100m in length, with ti ¼ 0 and when separated by various distances b ¼ c2 � c1 ranging from 40m down to just

2.5m. The maximum plate elevation occurs along y ¼ 0 and between the two cracks (illustrated, for example, in Fig. 7

for a separation of 20m) and this is plotted in Fig. 6 as g0d is varied. As the separation between the cracks is reduced, a

primary peak in the resonant amplitude is formed which increases in size dramatically. A secondary peak also forms at

higher values of g0d, but only for closely separated cracks. Perhaps the most interesting aspect of these plots is the size

of the resonant amplitude for fairly modest separations and also the broadness of the peak over a large range of values

of g0d. For example, with b ¼ 10m, the maximum amplitude of the plate between the cracks is over four times the

incident wave amplitude for all wavelengths between 50 and 110m.

The modulus of the SIF, jK�1 j associated with the ends of the cracks for a single crack as a function of wavenumber

g0d is plotted in Fig. 8. The SIF is dimensional and the large values taken by jK�1 j in Fig. 8 is due mainly to the its

dependence on Young’s modulus, E. In Fig. 8(a) the dependence of the SIF on crack length is shown for symmetric

beam-incident waves. As expected, the SIF associated with each crack tip rapidly becomes independent of the

length of the crack as it is increased. This is more apparent at larger values of g0d (smaller wavelengths), again

as expected. This result might allow us to speculate that, for the particular set of parameters being considered in

this numerical experiment, the response at the centre of a crack of length 100m would be close to that for an infinitely

long crack.



ARTICLE IN PRESS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11  0.12

(a)

|K
± 1
|

|K
± 1
|

γ
0
d γ

0
d

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11  0.12

(b)

Fig. 8. The stress intensity factors associated with crack tips as g0d varies for: (a) a single crack of length 25m (solid), 50m (long dash),

100m (dotted) under beam incidence; (b) a crack of length 100m for beam incidence (solid line), 45� incidence (dashed lines—upper/

lower lines near/far cracks) and head incidence (dotted lines—upper/lower lines are near/far cracks).

-200

150

50

-4

-2

6

4

R
 {

� d
}

8

0

2

100

0
-100

x (m)

y (m
)

0 100 200

Fig. 7. Snapshot of diffracted part of the plate elevation for two aligned parallel cracks, length 100m, separated by 20m under beam

incidence at resonance, g0d ¼ 0:0628 ðl ¼ 100mÞ.

R. Porter, D.V. Evans / Journal of Fluids and Structures 23 (2007) 309–327 325
In Fig. 8(b) the effect of the incident wave angle on the SIF at the near and far ends of a single crack of fixed length

100m is shown. At beam incidence, the SIF at the two ends of the crack are, of course, identical.

Finally, in Fig. 9 we show illustrative results for four cracks, in this case randomly arranged and under oblique

incidence; see figure caption for details. A plan view shows a snapshot in time of the diffracted wave relief as different

shades of black of white. The incident wave angle is 45�, and it can be seen that the primary scattering angles, as

expected, for this relatively high-frequency wave is at 45� and 135�. This is because a dominant part of the wave

diffraction is wave reflection from, and transmission beyond, the cracks. A lesser component of the wave diffraction is

due to the end effects of the cracks.
8. Conclusion

In this paper we have shown how the problem of wave scattering of an incident plane wave by narrow straight-line

cracks in an elastic sheet floating on water can be formulated in terms of integral equations for functions related to the

jumps in slope and displacement across the cracks. These integral equations are shown to have hypersingular kernels.

The numerical method for computing their solution uses a Galerkin approach in conjunction with certain orthogonal
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functions. These functions incorporate the physical nature of the solution at the ends of the crack, as well as allowing

explicit integration of the singular components of the integral equations.

The current problem is a significant extension of the large body of previous work which has considered the two-

dimensional problem of wave transmission beyond infinitely long straight-line cracks, in that the effect of crack

terminations on wave propagation are included. Simple expressions have been derived for the SIFs associated with the

ends of the cracks. These factors are important in determining the onset of fracture, which may occur once the factors

exceed an experimentally determined critical value.

The canonical problem involving crack terminations is one in which waves are incident upon a crack of semi-infinite

extent. Here, an analogous problem exists in the in vacuo case, namely the scattering of flexural waves by a semi-infinite

crack in an elastic sheet, and has previously been considered by Norris and Wang (1994). They used a Wiener–Hopf

approach in the solution of the problem and paid particular attention to the wave energy which is fed into the form of

‘edge waves’ which propagate to infinity along the free edges of the crack. Such edge waves are well-known and explicit

for a plate in vacuo, and analogous edge waves for a crack in an elastic plate over water were shown to exist numerically

by Evans and Porter (2003). Thus, there remains the possibility of extending the work of Norris and Wang (1994) to the

case of an elastic sheet having a semi-infinite crack bounded below by fluid. Preliminary work suggests that the solution

of this problem is requires a Wiener–Hopf split function not defined explicitly, but as a parameter in the integrand of a

Fourier-type integral which greatly complicates the solution.

A further generalization of the current work involves the scattering of waves by cracks of arbitrary shape and

orientation. Here, analytic progress has been made by the authors and this will take the form of a subsequent publication,

although some preliminary details of the method have previously been reported in Porter and Evans (2004).
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